The Metropolitan Transportation Authority (MTA) in New York City has partnered with Google for a groundbreaking pilot program focused on enhancing the reliability of its old subway network. Utilizing Google’s mobile technology, the effort aims to detect and resolve rail problems before they cause service interruptions. Named “TrackInspect,” the project signifies a considerable advancement in applying artificial intelligence and contemporary technology to public transportation.
La iniciativa piloto, que inició en septiembre de 2024 y finalizó en enero de 2025, consistió en equipar algunos vagones del metro con teléfonos Google Pixel. Estos dispositivos se encargaron de recolectar datos de audio y vibración para identificar posibles fallas en las vías. Luego, la información fue evaluada a través de los sistemas de inteligencia artificial en la nube de Google, los cuales señalaban las zonas que necesitaban una revisión más detallada por parte del personal de la MTA.
“By spotting initial indicators of track deterioration, we not only cut down on maintenance expenses but also lessen inconveniences for passengers,” stated Demetrius Crichlow, president of New York City Transit, in an announcement made public in late February.
The collaboration between the MTA and Google forms part of a wider initiative to update New York’s 120-year-old subway network, which still struggles with issues tied to its outdated infrastructure and regular delays. Although the pilot program showed encouraging outcomes, uncertainties persist regarding the potential expansion of TrackInspect due to the MTA’s budgetary limitations.
Addressing delays through AI and smartphones
Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.
The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.
The TrackInspect program aims to address one critical aspect of the issue: identifying and resolving mechanical problems before they escalate. During the pilot, six Google Pixel smartphones were installed on four R46 subway cars, which are known for their distinctive orange and yellow seats. The devices recorded 335 million sensor readings, over one million GPS data points, and 1,200 hours of audio.
Rob Sarno, serving as an assistant chief track officer for the MTA, was integral to the project. His duties involved examining audio clips that the AI system flagged for potential track issues. “The system pinpoints zones with unusual decibel levels, possibly signaling loose joints, damaged rails, or other defects,” Sarno elaborated.
La línea de tren A, seleccionada para el piloto, presentó un entorno de prueba variado con vías tanto subterráneas como elevadas. Además, incluyó segmentos de infraestructura recientemente construida, ofreciendo un punto de referencia para comparaciones. Aunque no todos los retrasos en la línea A se deben a problemas mecánicos, los datos recopilados durante el programa piloto podrían contribuir a resolver problemas recurrentes y mejorar el servicio en general.
The A train line, chosen for the pilot, offered a diverse testing environment with both underground and above-ground tracks. It also included sections of recently constructed infrastructure, providing a baseline for comparison. While not all delays on the A line are caused by mechanical issues, the data captured during the pilot could help address recurring problems and improve overall service.
Promising results but hurdles remain
El programa también incorporó una herramienta impulsada por inteligencia artificial basada en el modelo Gemini de Google, que permitía a los inspectores hacer preguntas sobre protocolos de mantenimiento e historial de reparaciones. Esta inteligencia artificial conversacional ofrecía a los inspectores información clara y útil, lo que facilitaba aún más el proceso de mantenimiento.
The program also included an AI-powered tool based on Google’s Gemini model, which allowed inspectors to ask questions about maintenance protocols and repair history. This conversational AI provided inspectors with clear, actionable insights, further streamlining the maintenance process.
La participación de Google en el piloto formó parte de una iniciativa de prueba de concepto desarrollada sin costo para la MTA. Sin embargo, ampliar el programa probablemente requeriría una inversión considerable, convirtiendo el financiamiento en un factor clave para los responsables de la toma de decisiones.
An increasing trend in transit advancement
A growing trend in transit innovation
Google ya ha colaborado anteriormente con otras agencias de transporte. El gigante tecnológico ha creado herramientas para optimizar la programación de Amtrak y se ha aliado con proveedores de tecnología de estacionamiento para integrar datos de aparcamiento en la calle en Google Maps. No obstante, la envergadura y complejidad del sistema de metro de Nueva York hace que este proyecto sea especialmente ambicioso.
Google itself has collaborated with other transportation agencies in the past. The tech giant has developed tools to enhance Amtrak’s scheduling and partnered with parking technology providers to integrate street parking data into Google Maps. However, the scale and complexity of New York’s subway system make this project particularly ambitious.
Looking forward
Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.
Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.
Reflecting on the project, Sarno highlights the promise of AI-driven solutions to revolutionize public transit. “This technology enables us to identify issues sooner, act more swiftly, and ultimately offer improved service to our passengers,” he stated.
As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.
The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.